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Accurate Quasi-TEM Spectral Domain Analysis of
Single and Multiple Coupled Microstrip Lines of
Arbitrary Metallization Thickness

Jen-Tsai Kuo, Member, IEEE

Abstract—The quasi-TEM spectral domain approach (SDA) is
extended to rigorously and efficiently analyze single and multiple
coupled microstrip lines of arbitrary metallization thickness.
The charge distributions on both the horizontal and vertical
conductor surfaces are modeled by global basis functions. This
results in a relatively small matrix for accurate determination of
the line parameters of coupled thick microstrips. A convergence
study is performed for the results of a pair of coupled lines
with crucial structural parameters to explore the conditions for
obtaining reliable solutions using the technique. Results for thick
microstrips are validated through comparison with those from
available measurements and another theoretical technique. The
soundness of the technique is further demonstrated by looking
into the trend of the results obtained by a simplified model in
which the structural parameters are pushed, step by step, to
the numerical extremities. Variations of circuit parameters of a
four-line coupled microstrip structure due to the change of finite
metallization thickness are presented and discussed.

I. INTRODUCTION

HE MICROSTRIP line is widely recognized as the planar

transmission line most extensively used and analyzed [1].
Many analyses of planar transmission lines are based on an
assumption that the metallic strips are of zero thickness be-
cause this can simplify the electromagnetic formulation. Finite
metallization thickness, however, is one of several important
factors that affect the propagation properties of microstrip
lines, since it must influence the field distribution around
the strip. Typical examples are the microstrips designed to
carry at least moderate power in microwave integrated circuits
(MIC’s) [2] and narrow but relatively thick conductors used
as waveguiding media in high-density miniaturized monolithic
microwave integrated circuits (MMIC’s).

Some full-wave approaches [3]-[5] have been developed to
analyze the finite thickness microstrip lines for applications
at high frequencies. However, most of the analyses [6]-[13]
are based on quasi-TEM formulations since the results are
acceptably accurate at low frequencies and easy to obiain.

The conformal mapping method [6] has played a funda-
mental role in the development of microstrip line analysis.
Later, the Green’s function method [7] and the boundary
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element method [8] have also been formulated to tackle thick
microstrips in a metallic enclosure.

The technique presented in [9] is the prelude to a widely
adopted spectral domain approach (SDA) used in analyzing
planar transmission lines. The SDA is superior to many nu-
merical methods in the spatial domain [14] because of its ease
of formulation, numerical efficiency, and good accuracy. The
SDA formulation for rigorously analyzing planar waveguiding
structures, however, has hitherto been restricted to infinitely
thin strips.

Recently, the circuit parameters of stratified dielectric struc-
tures with rectangular and trapezoidal strip cross sections
have been calculated based on a two-level model [10] and a
multistrip model [11]. The accuracy of the two-level model has
been validated against measured results for moderately thick
coupled strips. It is obvious that the multistrip model is more
suitable for strips with further thickness. However, in some
special MIC and MMIC designs, e.g., directional couplers of
high coupling parameters [2] or filters of wide bandwidth,
the gap of the parallel coupled strips may become much
narrower than the width. Under this circumstance, it becomes
a challenge to obtain accurate results using these models. This
is because the contributions from the charges on adjacent
strip sidewalls to the propagation charactristics can become
dominant, and the matching quality of the boundary condition
over there is critical in determining the line parameters. We
will address this issue in greater detail later.

Also of interest are the works presented in [12], [13].
Olyslager [12] tackles the general multiconductor transmission
lines by a new and fast algorithm. Gentili [13] analyzes planar
transmission lines with finite thickness based on a mixed
spectral-space domain representation of the Green’s function.
It is worth mentioning that in works [11]-[13], with the aid
of the Green’s function in the spectral domain and the inverse
Fourier transform, the spatial Green’s function is invoked to
set up an integral equation. Then discretized basis functions
are adopted to model the unknown charge distributions and to
reduce the integral equation to a matrix equation via the point-
matching method [11], [12] or the Galerkin’s technique [13].
Note that the order of the matrix in the final matrix equation,
which is reduced from the integral equation, is proportional to
the number of discretized bases used for each conductor.

This purpose of this paper is to extend the standard SDA
formulation, incorporated with a set of global basis functions,
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to analyze microstrip lines of rectangular cross sections. An-
alytical Fourier transform is invoked for each global basis
function, whereas the process of the inverse Fourier transform
is not necessary (as guaranteed by the Parseval’s theorem via
the application of Galerkin’s procedure).

It is the use of global basis functions that results in a
relatively small matrix in the final matrix equation. It will be
shown later that the price paid for this is the involvement
of certain single and double integrals. The evaluations of
these integrals may be detrimental to efficiency, one of the
key inherent advantages of the SDA technique. To maintain
efficiency, an interpolation formula is used to evaluate the
integrals based on a database in readiness.- As a result, the
efficiency of the method is greatly improved.

The presentation is organized as follows. Section II formu-
lates the SDA for multiple coupled microstrip lines of arbitrary
metallization thickness. Section III describes the global basis
functions used in the analysis and the details for tackling
the single and double integrals. In Section IV, a convergence
study of the circuit parameters for a pair of coupled lines
with crucial structural parameters is performed to explore the
conditions for obtaining reliable field solutions. An extensive
investigation into the multistrip modeling is' done to demon-
strate the soundness of the proposed technique in analyzing
coupled microstrip lines with highly metallized thickness and
close proximity. Calculated characteristic impedances for thick
microstrips are compared with the available measured data and
by another analysis technique. Finally, the circuit parameters
of multiple coupled microstrip lines in response to the variation
of metallization thickness are presented.

II. FORMULATION

In Fig. 1, the rectangular boxes sitting on the subtrate stand
for the analyzed perfectly conducting multiple coupled mi-
crostrips of finite metallization thickness ¢. The cross sectional
electrostatic field solution of the multiconductor transmission-
line structure is governed by the Poisson’s equation

(8%/02* + 8% /0y p(, y) = —p(x, ) [e(y) (1)

where ¢(x, y) is the potential function and p(z, y) the charge
density distribution: The first step of the SDA is to apply the
Fourier transform to the field quantities in (1). Consider the
coupled microstrips in Fig. 1 as a multilayr multiconductor
structure, in which the line sources are placed at y = 0, £, and
t. The spectral Green’s function at each interface with source
can be written as [10] ‘

G(an, y; €) = An(&) sinh (any) + Ba(€) cosh (any),
0<y<t (@

Since all the mathematical manipulations in the spectral do-
main deal with the same spectral variable, a,,, it is suppressed
in the field expressions herein. Note that the charge densities
on each conducting surface are continuously distributed. Thus,
to calculate the spectral potential functions for 0 < y < ¢, the
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Fig. 1. Structure of the analyzed multiple coupled thick microstrip lines.

contributions from the charge densities on the vertical surfaces
should be superimposed for all possible &, in addition to those
on the horizontal ones. It leads to

4
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where the overhead tilt represents the transform of the corre-
sponding field quantity, the subscripts ¢ and / denote the orders
of conductors, and j and k are used to identify the conductor
surfaces. Surfaces 1 and 2 are those at y = ¢ and y = 0,
respectively. ¢;3 and ¢y, are the spectral potential functions
on the surfaces at z = x;3 and & = x,4, respectively. pi’s
are the transformed unknown charge distribution functions on
conductor surfaces and N, is the number of conductors in the
structure. The Green’s function G;; denotes the potential on
the jth surface in response to the delta source on the kth one.
For j > 3 and k > 3, the Green’s functions have different
expressions for y > & and y < £ to account for the field point
being above or below the source.

The Galerkin’s technique is used to set up the final matrix
equation. The unknown charge distributions are expanded in
terms of known basis functions, namely

K,
(€)= D aigmpign () @
m=1

where a;;,’s are the unknown constants to be solved, and
K, is the number of basis functions used to model the
charge distribution on each surface. Substituting (4) into (3),
multiplying both sides by f7;,,,, and taking summations with

respebt to the discrete values of o, for n = —co to 400, one
obtains
V; 2 -
ZQijm = Z {Zalkpijplkp
n,p,l \k=1

4 t
+ 5 aug / éms)%(odﬁ}ﬁzm (52)
k=3
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for 7 = 1 and 2, and

2
V; ~ ¢ ok
5 Quim = > { 1alkpplkp/0 Gk(Y)Brym (y) dy

n,p,l Lk=
4 t pt
k=3

for 5 = 3 and 4, after both sides are further integrated from
y =0 to y = t¢. Here, V, is the potential of the ith conductor,
Q.jm 18 the area covered by the basis function p,;.,, and
the superscript asterisk denotes the complex conjugate. The
left-hand side of (5) is obtained via the Parseval’s theorem
[7].

The simultaneous equations in (5) for all different values of
1, 7 and m give the final matrix equation

Ma=d ©)

where d is a column vector of size 4N.Kj, and the entries
of the constant vector g are the expansion coefficients of
the basis functions. Note that if the entries involving single
and double integrals, which represent the contributions of the
charge distributions on vertical surfaces, are removed from M,
the matrix equation is reduced to that obtained by the two-level
model [10]. The numerical treatments of the involved integrals
will be reported in the next section.

After the vector g is obtained from (6), the entries of
distributed capacitance matrix C' can be calculated via

Cy= @i N

Vi V=0, k1

where (); is the total charge on the ith conductor due to the po-
tential excitation V;. The inductance matrix L is calculated as
the inverse of C with the dielectric layer being replaced by air.
It is known that there are N, eigenmodes that propagate along
the multiconductor transmission-line. The effective dielectric
constant for each eigenmode and the associated eigenvoltage
vector are respectively the eigenvalue and eigenvector of
the matrix product L C. The ecigencurrent vectors are the
eigenvectors of the product C L. Let M, (M;) be the
eigenvoltage (eigencurrent) matrix of which each column is
the eigenvoltage (eigencurrent) vector. Then the characteristic
conductance matrix G is M; postmultiplied by M ‘_,1. The
characteristic impedance matrix is the inverse of G. When
N, =1, the effective dielectric constant and the characteristic
impedance reduce to

€reff = CJCoy  Zo=[(CCHYTHQ)  (8)
where C,, is the distributed capacitance for ¢, = 1, and v, the
velocity of light in free space.

III. THE GLOBAL BASIS FUNCTIONS
AND NUMERICAL DETAILS

Since the SDA formulation for analyzing the coupled thick
microstrips is analytical, the accuracy of the line parameters
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depends mainly on the quality of the basis functions. So
the basis functions should be carefully chosen to assure the
reliability of the results.

A. The Global Basis Functions

The adopted basis functions for the ith conductor are
Poym(ui)=1tuw,)  +amn (1 u) " +b,(1 +£u,)™? (9)

where —1 < u, < 1. For odd (even) m, the plus (minus) sign is
referred and ¢ = (m+1)/2 (¢ = m/2). For horizontal surfaces
U, = 202 — ,0)/W; with ;. = (2,3 + 7,4)/2 and for vertical
ones u, = 2(y — y.)/t with y. = t/2. The constants a,, and
bm are specified according t0 py;m (1) = p};,,,(1) = 0 for odd
m and p,jm(—1) = p},,,(—=1) = 0 for even m. 7, is the power
of the first term of the mth basis function used to characterize
the asymptotic behavior of the charge distribution near the
conducting corner. For the corners at y = ¢, 7, = 2¢/3 — 1
[15]. Note that 7 = 79 = —1/3 which guarantees that the
charge distribution has singularity as §~/3 as u, approaches
—1 and +1 for odd and even m, respectively. Note that the
asymptotic behavior of the charge distribution near the edges
at y = 0, when ¢, > 1, is different from that at y = ¢. From
[16], one can obtain

T =T = 2/mtan "t /1 + 2/e, — 1

for the conductor corners at y == 0. The results obtained by
these two 71 values will be compared in the next section.

The derivation of the bases (9) is similar to that reported
in [15]. Extensive studies have been done [15] for the bases
incorporated in the full-wave SDA in analyzing coupled thin
microstrip lines. It has been found that the bases are capable
of providing smooth current distributions and accurate field
solutions even if the lines are electrically wide and strongly
coupled. The performance of the basis tunctions (9) as applied
to thick microstrip problems will be investigated later.

(10)

B. Numerical Details of the Single and Double Integrals

The matrix M in the final matrix equation (6) is symmetric.
Thus, only the entries in the upper triangle need computing.
If K, = 2N, bases are used for each surface in a single-
conductor problem, (4N;)? single integrals and (4N, )(4Np +
1)/2 double integrals are involved for each spectral variable
an. It may take a long time to calculate these entries. To
minimize the computing time, an efficient way must be used.

1) Single Integrals: The y-dependence of the Green’s func-
tion G,(y) in the one-dimensional integrals in (5) can be
a linear combination of either cosha,y and sinha,y or
coshay, (t — y) and sinhaa, (t — y), 0 < y < ¢. Substituting
one of the three terms of the bases in (9) into (5) and using
exponential functions to replace the hyperbolic functions, one
can find that all the single integrals fall into the following two
categories:

1
(9, m:/ e~y du (11a)
0
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1
L(9Q, T) :/O e (1 — )" du (11b)

where € = |a,|t. The closed form expressions for I and I
can be easily derived for small and large arguments. Note that
for the mth basis function in (9) the single integral becomes

I (Q) = L(Q.7g) + am L (2, Ty41) + b Lo (2, 7412)

s=1,2. (12)

2) Double integrals: In a fashion similar to the derivation
of (11). each double integral in (5) is found to be weighted
sums of the following three types of integrals

/ et O fa

(13a)
D2]k Q) =e

/ / ~Q(1—ju—v) {(1““)”}{( ;TZ)Tk}dudv

(13b)
Il(Q, Tj) }{Il(Q, Tk) }
Iz(Q, Tj) Iz(Q, Tk) '

The absolute value operations in the exponents reflect
the fact that the Green’s functions G, (y, &) have different
expressions for y > £ and y < . The value of Q can range
from zero to a large one, depending on how thick the strip is
and where the spectral summation is truncated, so the simple
closed forms for Dy, and Dy, with sufficient accuracy
are nearly impossible to obtain. On the other hand, if (13a)
and (13b) are expanded into double infinite series, the results
converge quickly for {2 < 1. But it will take a long time to
calculate the data for © > 1. An efficient way to evaluate
these integrals when the program is being executed is to use
a database in readiness as described below.

3) The database and the interpolation: Two one-
dimensional integration routines, which are capable of
handling singularities at both upper and lower integration
limits, are employed to calculate the integrals sampled at
Q = 0,0.125, 0.25,---,250. Dsy;;’s are calculated up to
2 = 50 and neglected for £2 > 50. The memory required to
store these samples, for NV, = 4 and 10-digit accuracy and for
both the single and double integrals. is about 3.5 megabytes.
The Lagrange eight-point interpolation formula [17] is used
to approximate the integrals based on these samples. It can
be expected that only a small portion of CPU time is used
for the computation of this part (the entries in M involving
one- and two-dimensional integrations) when the program
is being executed.

The values of [y, need evaluating for 2 > 250 for some
special cases. The integrals are first analytically changed to

Dl]k‘

D3, () = { (13c)

1

1
D1, () = S +Tk+1/ e~ Mg 1 (u) du (14a)
’ 0
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where
2—u
_ (2-v—u)n
gjk(u)—/u { (v 4 u)™

Then a set of 257-point equidistant samples of g, (u) are cal-
culated within 0 < » < 0.1, and the integrals are approximated
by the Simpson’s rule [17]. Note that the values of g,; are
significant only when v is small. That is the very reason why
0.1 instead of 1 is used as the upper limit of the samples.

HC o

(14b)

IV. RESULTS

In this section, a convergence study is performed for the line
parameters for a pair of closely coupled thick strips to indicate
the numbers of basis functions and spectral terms required in
the SDA program to obtain reliable data from the computer
simulation. Then, to validate the proposed technique, the calcu-
lated microstrip characteristic impedances are compared with
those obtained by other theoretical technique and available
measured data. The soundness of the proposed technique is fur-
ther demonstrated by investigating the trend of the capacitance
values for a particular coupled-line obtained by the multistrip
model, with model parameters being successively pushed to
near the numerical extremities. Finally, the influence of finite
metallization thickness on the line parameters of a four-line
coupled microstrip structure is presented and discussed.

A. Convergence Study and Numerical Efficiency

A pair of coupled microstrips with aspect ratios w: t: s =
0.2:1:0.1 is used to examine the performance of the em-
ployed global bases in (9) incorporated into the SDA. The
ratios are chosen to provide a rigorous test for the SDA
program to achieve accurately converged results for both odd-
and even-mode excitations.

Fig. 2(a) and (b) plots, respectively, the effective dielectric
constants and characteristic impedances for the coupled lines
against the normalized number of spectral summation terms,
N’ = Nhy /A, included in the calculation for different values
of Np. The size of the matrix M in (6) is 8N, x 8N,. For
reference, the dashed lines in the figure show the boundaries
for £0.05% deviations from the nearly converged data using
Ny =4 and N/ = 5 x 103

The solid lines are the results using 7; = 7, given in (12)
and the dotted lines using 7, = 719 for the first basis function
in (9). Note that the values of a; and by in (9) are different
for both 7, values and that 71¢ is used for the edges at y = 0
when C is calculated. All the higher order terms use the same
powers, i.e., 7, = 2¢/3—1 for ¢ > 1. As indicated in Fig. 2(a)
and (b), 1) for Ny, = 3 and 4, the nearly converged results
for both 71 values have less than 0.01% discrepancies, and 2)
Ny = 3and N’ &~ 2x10? are needed to obtain solutions within
the £0.05% boundaries. Also of interest, but not shown here,
is that similar convergence conditions have been obtained for
the case with ¢ = 0.1, s = 0.025, with all the other parameters
remaining unchanged. Since the numerical reliability has been
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Fig. 2. Convergence study for the line parameters of a pair of closely coupled

" thick microstrip lines for even- and odd-mode excitations. (a) Effective
dielectric constants. (b) Characteristic impedance.

established, 1) 7y = 7y, for each substrate dielectric constant
used here, 2) N, = 3 and 3) N/ = 2 x 10? are used for
calculation of results. Note that i) can reduce the preprocessing
tasks and memory for the integration database.

The program is executed on an IBM 320 workstation. No
asymptotic expression for the Green’s function, such as that
in [12], or transformed basis function is used. For zero-
thickness microstrip, it takes eight seconds to calculate the
line parameters for Ny = 3 and 2 x 10* (N/ = 2 x 10%
using A/hy = 10) spectral summation terms. For the present
technique, where the order of the final matrix is increased by
a factor of 4, it takes 64 seconds to calculate the results and
30 seconds to read the integration database.
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TABLE I
COMPARISON OF CHARACTERISTIC IMPEDANCE VALUES OF THICK
MICROSTRIPS, STRUCTURAL PARAMETERS: €, = 4.7, t = 2.8

h, | w | Measurement [i8)| Theoryin{7] | Thiswork
8 1 10 53 — 56.03
8] 15 425 - 45.64
8 | 20 36 - 38.64
4] 10] 13 = 73.35
141 15 61 61.8 62.03
311 S 116 118.4 118.6
31| 10 102 - 99.93
31| 15 90.5 87.8 88.12
31| 20 81 79.2 79.48
60) 3.7 151 - 148.8
601 10 1254 - 122.7
60| 15 111 - 110.8

B. Comparison with Other Theory and
Available Measured Data

It is necessary to examine if the converged results computed
by the SDA program are correct. The structure shown in Fig. 1
can be used to simulate an open microstrip line using relatively
large values of .S, hg and A as compared with strip width and
substrate height. Table I compares the calculated characteristic
impedances with those provided by the Green’s function
method {7] and experimental measurement [18]. The strip
thickness ¢ = 2.8 and substrate relative dielectric constant ¢, =
4.7. Among the case studies listed in the table, the strip width
to substrate thickness ratio covers from 0.06-2.5 and strip
thickness to the strip width ratio from 0.14-0.76. As shown
in the table, both theoretical techniques have closer values,
and the calculated and measured results show reasonable
agreement. '

-C. Comparison with the Multistrip Model

The two-level model [10] and the multistrip model {11] are
important milestones for the approximate analyses of finite
thickness microstrip lines. Using these models, the formulation
can be significantly simplified and the results can be efficiently
obtained. For example, if the SDA is used, neither double
nor single integral is involved in the final matrix. In the
multistrip model, the boundary condition on the strip sidewalls
is simulated by pairs of narrow strips at different levels. If the
width of these narrow strips could be reduced to zero and the
number of levels could be increased to infinity, the simulated
boundary condition would be as ideal as that is formulated in
Section II. Thus, in this subsection, the model is investigated
extensively to show how narrow the width is and how many
the number of the levels is sufficient to obtain the accurately
converged results. The coupled lines in [11] is used as the
test configuration and the result calculated by the proposed
technique is referred as the accurately converged solution.

Fig. 3 compares the referred odd-mode capacitance value
with those presented in [11, Fig. 5], where the converged
results are given only up to eight levels. Note that the referred
result is irrelevant to the number of metallization levels. The
results from both approaches deviate from each other by about
10%, which is a large value for many applications. Thus,
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Fig. 3. Comparison of calculated odd-mode capacitance for suspended cou-
pled lines with those obtained by the multistrip model.

it is necessary to investigate what happens in between. The
investigation is done by successively reducing the width of

the inner level strips and increasing the number of levels to

check if the results can approach to the referred value.

The test widths of the inner level strips are §W = A,
A/2, A4, A/8, and A/16, where A = W/80. The results
for each width are calculated up to 80 levels. The standard
SDA for infinitely thin conductors is employed to assist the
investigation. The basis functions in [15] are used as the basis
and test functions for the charge densities on the top and
bottom levels and rectangular pulsés for the inner strips. To
obtain converged field solutions, N’ = 10* is required for
§W = A, A/2, and A/4 and N’ = 2 x 10% for §W = A/8
and A/16. Note that the matrix size for the multistrip model
is close to double the number of strip levels.

The plots for éW = A and A/2 reach the converged
values at 16 and 24 levels, respectively. As the inner strips get
narrower up to A/8, more levels are required for convergence,
and the nearly converged values increase. It should be noted
that insufficiently small value of 6W leads to a result with
poor accuracy even when a large number of levels is used.

The results for §W = A/8 and A/16 at 40 levels have
2% deviation from the referred data. The deviation is. further
investigated as follows. First, the rectangular pulse may not be
a good choice to model the charge density on the inner strip,
since the charge densities on the inner strips away from the
lateral walls should be vanished. Right-angled triangular basis
functions are thus used. Only 10% of the deviation is reduced,
i.e., the capacitance value has 1.8% deviation from the referred
result. Second, the number of levels is increased from 40 to
80. As shown in Fig. 3, the deviation is reduced to 1%. It
indicates, again, that the role the number of levels plays in the
convergence process.is important. Note that each inner strip,
if sufficiently narrow, can be looked as a matching “point”
that satisfies the boundary condition on the conductor surfaces
in the vertical direction. So, that more and more “points” are

required to support the convergence means that the matching

quality of the boundary condition is closer and closer to the
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ideal case. Thus, by method of induction, it can be concluded
that the results obtained by the multistrip model, with both
sufficiently small §W and a sufficient number of metallized
levels, do approach to that obtained by the proposed technique.

D. The Influence of Finite Metallization
Thickness on the Propagation Characteristics of
Multiple Coupled Microstrip Lines

In this subsection, the proposed technique is employed to
investigate the influence of finite metallization on the line
characteristics of multiple coupled microstrip lines. Fig. 4
shows the results for a four-line microstrip structure, in which
the lines are of equal widths and equidistantly spaced. The
structure has four eigenmodes with effective dielectric con- -
stants €reppi, 1 < ¢ < 4, eigenvoltage vectors of relative
amplitudes (leie;l), (lea — es — 1), (1 — es — e3l), and
(1 — eqeq — 1), which are referred to as modes 1, 2, 3, and 4,
respectively. The modes are identified as their ¢,.ry values in
a descending order as shown in Fig. 4(a). All the effective
dielectric constants decrease as the thickness is increased.
Mode 1 has the least variation of €..;; value due to the
change of metallization thickness, whereas mode 4 has the
most vairation. The €,.7y values of modes 2, 3, 'and 4 are
more and more influenced by the change of { when the strips
get closer and closer. Note that the plots for €. FF2, Ereff3, and
€reff4 change quickly when S is further decreased from 0.1.

The variations of mode amplitudes in response to the change
of t values are plotted in Fig. 4(b). The values of ¢; are
important for analyzing crosstalk produced on the lines in the
multiconductor transmission-line system. Due to the increase
of the strip thickness, the value of ey varies significantly, but
those of e1, es, and eg vary just perceptibly.

The. entries in characteristic conductance matrix G for
different values of ¢ are plotted in Fig. 4(c). Due to the
reciprocity relation and the symmetry of the structure, only
Gij, 1 < j < 4, Gao and Gaz need to be specified.
G13 and G4 are not plotted here, since their magnitudes
are much smaller than the others’. Note that the values of
G;; are positive for i = j and negative for i # j. The
magnitude of each entry increases as the thickness is increased.
Significant increases of the (; values are found when the
line spacing is small. When the spacing is larger than two
times the strip width, each conductance plot approaches its flat
part. The results shown in Fig. 4 indicate that the influence
of finite metallization on the circuit parameters of multiple
microstrip lines is important, especially when the lines are
closely coupled.

V. CONCLUSION

The spectral domain approach (SDA) has been successfully
applied to analyze single and coupled microstrip lines with
arbitrary metallization thickness. The infinitesimal thickness
for the strip conductor is no longer a limitation ‘on the
applicability of the SDA technique.

In the analysis, the legitimacy of the extended SDA incor-
porated with the applied basis functions is validated through
the demonstration of its capability of providing accurately con-
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Fig. 4. Influence of finite metallization thickness on the line parameters of a four-line coupled microstrip siructure. (a) Effective dielectric constants. (b)
Relative magnitudes of eigenvoltage vectors. (c) Entries of the characteristic conductance matrix.

verged results for closely coupled thick microstrip lines using
a small matrix. The extensive investigation into the multistrip
model shows that the results with structural parameters being
pushed to the extremities do approach to the converged result
obtained by the proposed technique. For multiple coupled
microstrip lines, line parameters for different eigenmodes are
influenced by the finnite metallization thickness in different
ways. The importance of the responses of the line character-
istics to the change of finite metallization thickness should be
specially emphasized when the lines are closely packed.
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